Membrane-less condensates can play roles within the cell comparable to those described for conventional membrane-bound organelles, including molecular sequestration, facilitating metabolic reactions, and channeling and amplifying intracellular signaling. The name organelle, comes from the fact that these structures are to the cell what our organs are to our bodies. And just as the field of tissue engineering has developed around the potential for organ replacements (i.e. heart, liver, kidney etc.), we are pioneering efforts to develop synthetic organelles for biomedical applications (i.e. organelle diseases) and for various biotechnology applications. This includes efforts to develop actuatable synthetic organelles in human cells, and in synthetic organelles in yeast being pursued in collaboration with the lab of Jose Avalos (Princeton Chemical and Biological Engineering).

Figure - Schematic organelle engineering. Synthetic organelles induced to assemble can potentially concentrate enzymes to enhance the rate of production formation for various biotechnology applications.